Friday quiz 2 - overall equations and ionic equations.

- 1) Write the balanced overall and ionic equations of the following. Give states.
 - a. Hydrochloric acid (HCl) solution reacts with calcium carbonate powder to produce a calcium chloride aqueous solution, carbon dioxide gas and liquid water.

Overall equation $2HCl(aq) + CaCO_3(s) \rightarrow CO_2(g) + CaCl_2(aq) + H_2O(l)$ Ionic equation $2H^+(aq) + CaCO_3(s) \rightarrow CO_2(g) + Ca^{2+} + H_2O(l)$

b. An aqueous solution of barium nitrate (Ba(OH)₂ is placed in an aqueous solution of hydrochloric acid (HCl) to produce an aqueous solution of barium chloride and liquid water.

Overall equation $Ba(NO_3)_2(aq) + 2HCl(aq) \rightarrow 2H_2O(l) + BaCl_2(aq)$ Ionic equation $2OH^{-}(aq) + 2H^{+}(aq) \rightarrow 2H_2O(l)$

c. An aqueous solution of hydrochloric acid (HCl) reacts with a solid piece of zinc metal to produce hydrogen gas and an aqueous solution of zinc chloride.

Overall equation $2HCl(aq) + Zn(s) \rightarrow ZnCl_2(aq) + H_2(g)$ lonic equation $2H^+(aq) + Zn(s) \rightarrow Zn^{2+}(aq) + H_2(g)$

d. Sodium oxide (Na₂O) solution is mixed with an aqueous solution of nitric acid to produce liquid water and an aqueous solution of sodium nitrate.

Overall equation $Na_2O(aq) + 2HNO_3(aq) \rightarrow 2NaNO_3(aq) + H_2O(l)$ lonic equation $O^{-2}(aq) + 2H^+(aq) \rightarrow H_2O(l)$

e. Copper(II) hydroxide powder is added to an aqueous solution of sulphuric acid (H₂SO₄) to produce water and aqueous solution of copper(II) sulphate.

Overall equation $Cu(OH)_2(s) + H_2SO_4(aq) \rightarrow H_2O(l) + CuSO_4(aq)$ Ionic equation $Cu(OH)_2(s) + 2H^+(aq) \rightarrow 2H_2O(l) + Cu^{2+}(aq)$

f. Hydrochloric acid (HCl) solution is mixed with an aqueous solution of sodium sulphite (Na₂SO₃) to produce sulphur dioxide gas, liquid water and an aqueous solution of sodium chloride.

Overall equation $2HCl(aq) + Na_2SO_3(aq) \rightarrow SO_2(g) + H_2O(l) + 2NaCl(aq)$ Ionic equation $2H^+(aq) + SO_3^{-2}(aq) \rightarrow SO_2(g) + H_2O(l)$

g. Copper(II) sulphide powder is placed in aqueous solution of HCl to produce solid copper chloride and hydrogen sulphide gas (H_2S).

Overall equation $CuS(s) + 2HCl(aq) \rightarrow CuCl_2(s) + H_2S(g)$ Ionic equation $CuS(s) + 2H^+(aq) + 2Cl^-(aq) \rightarrow CuCl_2(s) + H_2S(g)$ 2) Write the balanced ionic equation for the reaction that occurs when the two aqueous solutions of $CuSO_4$ and K_2S are mixed to form a precipitate.

 $Cu^{2+}(aq) + S^{2-}(aq) \rightarrow CuS(s)$

- 3) Write the balanced overall and ionic equation for the reaction between aqueous solutions of K_2CO_3 and HNO_3 . Include states.
 - a. Overall $K_2CO_3(aq) + 2HNO_3(aq) \rightarrow H_2O(l) + CO_2(g) + 2KNO_3(aq)$
 - b. Ionic $CO_3^{2-}(aq) + 2H^+(aq) \rightarrow CO_2(g) + H_2O(l)$
- 4) Write the balanced overall and ionic equations for the reaction between aqueous solutions of AgNO₃ and MgCrO₄ to form an insoluble, coloured, substance. Include states.
 Although the charge of CrO₄²⁻ is not given students should be able to obtain this using the formula of MgCrO₄ and the charge on the Mg ion given in the table below.
 Knowledge of how to write ionic formulae was required

 $Overall - 2AgNO_3(aq) + MgCrO_4 \rightarrow Ag_2CrO_4(s) + Mg(NO_3)_2(aq)$ $Ionic - Ag^+(aq) + CrO_4^{2-}(aq) \rightarrow AgCrO_4(s)$

Valency of Some Simple and Polyatomic Ions			
Valency	Simple (+ve) ions	Simple (-ve) ions	Polyatomic ions
1	Copper(I), Cu+ Hydrogen, H+ Potassium, K+ Silver, Ag+ Sodium, Na+	Hydride, H ⁻ Chloride, Cl ⁻ Bromide, Br ⁻ Iodide, I ⁻	Ammonium, NH ₄ + Hydrogencarbonate, HCO ₃ - Hydroxide, OH- Nitrate, NO ₃ -
2	Calcium, Ca ²⁺ Copper(II), Cu ²⁺ Iron(II), Fe ²⁺ Lead(II), Pb ²⁺ Magnesium, Mg ²⁺ Zinc, Zn ²⁺	Oxide, O ²⁻ Sulfide, S ²⁻	Carbonate, CO ₃ ²- Sulfate, SO4 ²⁻
3	Aluminium, Al ³⁺ Iron(III), Fe ³⁺	Nitride, N ³⁻	Phosphate, PO ₄ ³⁻